Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 13(2): 634-647, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38240694

ABSTRACT

With the emerging novel biotherapeutics that are typically difficult-to-express (DTE), improvement is required for high-yield production. To identify novel targets that can enhance DTE protein production, we performed genome-wide fluorescence-activated cell sorting (FACS)-based clustered regularly interspaced short palindromic repeats (CRISPR) knockout screening in bispecific antibody (bsAb)-producing Chinese hamster ovary (CHO) cells. The screen identified the two highest-scoring genes, Atf7ip and Setdb1, which are the binding partners for H3K9me3-mediated transcriptional repression. The ATF7IP-SETDB1 complex knockout in bsAb-producing CHO cells suppressed cell growth but enhanced productivity by up to 2.7-fold. Decreased H3K9me3 levels and an increased transcriptional expression level of the transgene were also observed. Furthermore, perturbation of the ATF7IP-SETDB1 complex in monoclonal antibody (mAb)-producing CHO cells led to substantial improvements in mAb production, increasing the productivity by up to 3.9-fold without affecting the product quality. Taken together, the genome-wide FACS-based CRISPR screen identified promising targets associated with histone methylation, whose perturbation enhanced the productivity by unlocking the transgene expression.


Subject(s)
CRISPR-Cas Systems , Genome , Cricetinae , Animals , Cricetulus , CRISPR-Cas Systems/genetics , CHO Cells , Protein Processing, Post-Translational , Antibodies, Monoclonal/metabolism
2.
J Control Release ; 330: 161-172, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33340565

ABSTRACT

A new vehicle is designed for the intracellular delivery of antibodies at nanomolar concentrations by combination of domain Z, a small affibody with strong binding affinity to Fc regions of immunoglobulin G (IgG), and the multimers of LK sequences, α-helical cell penetrating peptides (CPP) with powerful cell penetrating activities. Domain Z and multimeric LK are fused together to form LK-domain Z proteins. The LK-domain Z can bind with IgG at a specific ratio at nanomolar concentrations by simple mixing. The IgG/LK-domain Z complexes can successfully penetrate live cells at nanomolar concentration and the delivery efficiency is strongly dependent upon the concentrations of IgG/LK-domain Z complex as well as the species and subclasses of IgGs. The IgG/LK-domain Z complexes penetrate cells via ATP-dependent endocytosis pathway and the majority of delivered IgG seems to escape endosome to cytosol. Remarkably, the delivered IgGs are able to control the targeted intracellular signaling pathway as shown in the down-regulation of pro-survival genes by the delivery of anti-NF-κB using an LK-domain Z vehicle with a cathepsin B-cleavable linker between the LK sequence and domain Z. The simple but very efficient intracellular delivery method of antibodies at nanomolar concentrations is expected to facilitate profound understanding of cell mechanisms and development of new future therapeutics on the basis of intracellular antibodies.


Subject(s)
Cell-Penetrating Peptides , Cytosol , Endosomes , Immunoglobulin G
3.
Biomacromolecules ; 21(9): 3539-3546, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32678573

ABSTRACT

In this study, we propose a reversible covalent conjugation method for peptides, proteins, and even live cells based on specific recognition between natural amino acid sequences. Two heptad sequences can specifically recognize each other and induce the formation of a disulfide bond between cysteine residues. We show the covalent bond formation and dissociation between peptides and proteins in cell-free conditions and on the surface of live cells. Because heptad sequences consist of natural amino acids, they are expressed in cells without additional preparation and can be used to selectively conjugate peptides, proteins, and cells.


Subject(s)
Cysteine , Peptides , Amino Acid Motifs , Amino Acid Sequence , Amino Acids , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...